
1.
2.

1.
2.
3.

Parking APIs Introduction
Nwave provides four APIs to its clients. There are two main types of APIs – Push and Pull.

Data is retrieved by a client from the source in Pull APIs.
Data is sent by the source to a client in Push APIs.

Nwave’s APIs are based on three technologies

HTTP
AMQP
GraphQL

Type Techno
logy

API Advantages Disadvantages Typical applications

Push HTTP HTTP Caller Simple
Common
Real-time updates

Limited performance at scale
Transformation of occupancy
information to parking sessions
is necessary
Unordered message delivery

Raw sensor data transfer
between backend systems
It is good for quick proof of
concept demo integrations
and tests

AMQP RabbitMQ RTA
& Sessions

Fast
Reliable
Scalable
Real-time updates
FIFO message delivery

Requires setup and
configuration of the RabbitMQ
Server

Robust message bus between
high load backend systems
Commercial billing information
/ SDI

Pull HTTP REST
Occupancy

Simple
Fast response (<1s)
Quick setup

Does not support real-time
occupancy status updates

Query-based method to get
data when it is required, e.g.
loading a page about a
parking space, group or zone
occupancy

Parking
Analytics API

Simple integration
Flexible reports
Reports for the period of time
Response data is ready to
showing on charts

More complex than REST
Occupancy API
Flexibility of reports leads to
slower request processing

Allows to build your own
parking analytics dashbords
with wide range of filtration
and grouping abilities

Push &
Pull

GraphQL GraphQL
Occupancy

Flexible
Traffic-Efficient
Real-time updates

Relatively new and less
common

Modern and large user-based
web and mobile apps
Real-time dashboards

HTTP Caller

Diagram:

HTTP Caller API is one of the simplest types of API but provides little functionality to users. This API sends HTTP requests to your configured
endpoints. HTTP requests are formed based on raw sensor events. During downtime, Nwave’s cloud will make at up to 100 retries for each
request which can lead to high traffic spikes.

More details about this API can be found here .HTTP Caller

RabbitMQ RTA & Sessions

Diagram:

Rabbit MQ is an enterprise-grade message bus that separates the application from transport layers. For example, RabbitMQ lets you set up
messaging politics according to your preferences (e.g. you can configure a period and volume of message retention on a RabbitMQ server in
case your service is offline).

Nwave provides two types of parking data through RabbitMQ:

RabbitMQ RTA (Real-Time Availability) gives you enriched parking
occupancy information about every parking event. This lets you
receive comprehensive application occupancy data for unmarked
bays (when one car can occupy more than one sensor).

RabbitMQ Parking Session Logging saves your time and resources
on developing and maintaining the code for storing occupancy
history. RabbitMQ session is logging data which is already enriched
by Nwave cloud (for marked and unmarked bays): session start, end
time, session restoration in case of partial message loss and SDI
data.

Company Confidential

1.

2.

More details about these API can be found here: .RabbitMQ

REST Occupancy

REST Occupancy API is the API for retrieving real-time parking availability through simple HTTP requests.

This API provides a wide spectrum of query filters. You can use this API directly in your Web and Mobile Apps to:

Display occupancy around a user on the map
Recommend the nearest available parking spaces

More details about this API can be found here: .REST Occupancy API

GraphQL Occupancy

GraphQL Occupancy API provides the same functionality as Occupancy REST API (see above). But there are a few differences, which are very
significant for Mobile Apps and other low-latency applications.

GraphQL API provides real-time occupancy updates on end-user devices. The application is able to subscribe to occupancy changes
within a specified geospatial area.
GraphQL API allows you to request specific fields of an object which can significantly reduce traffic and increase speed.

More details about this API can be found here: .GraphQL Occupancy API

Company Confidential

1.
2.

Overview

Introduction

To send data over HTTP, device messages have to be transformed into an HTTP request. The blueprint for transforming a device message into
an HTTP request is known as a template. Sensors send different types of messages with different sets of fields, therefore a Template has to be
defined for each message type. Templates are grouped together into Template Suites and in order for messages to be sent, template suites have
to be connected to zones.

Template Suites

Template suites:

Store a collection of templates
Connect to zones with devices
Used for monitoring HTTP calls

Template

A template is a blueprint for building an HTTP request for a single message type.

Each template has the following fields:

Field Description

Name A unique reference for a template in a template suite

Message Type Type of message that this template will be applied to.

Method HTTP method that will be used for in a request

URL URL to which a request is made

Header Request headers, typically used for authorization

Body Request body defined as a JSON string

Authorization Methods

Basic HTTP(s) Authentication using authorization header in the format of "Basic " + Base64 (username: password)
API-Key

Message Types

Different message types have a set of common and distinct attributes that can be used in the template.

Message types have two main categories – Direct and Smart.

The main difference between these two categories is that Smart message types have a pre-defined template body that cannot be changed.
The resulting message structure is identical to RabbitMQ protocols (RTA & Parking Sessions) and supports Parking Session messages that are
crucial for unmarked parking bays and useful for payment applications. It also allows for an easier transition to RabbitMQ.

Category Message Type

Direct Status Change status change message is sent from a sensor when its value has been
changed (occupancy state for parking sensor or number of detected cars for
car counters

Heartbeat heartbeat message is sent after every constant time period of unchanging
sensor state

User Registration user registration message is sent when a user is authorized on the sensor
using a Bluetooth-tag

Smart Group Availability status change message in a group format with group summary

Company Confidential

Parking Sessions smart parking session messages formed by Nwave’s backend, with auto-
correction for lost messages

Company Confidential

2.

3.

Quick Start Guide
To start receiving Status Change messages to your backend over HTTP, you need to perform the following steps:

1. From your home page at d.nwave.io, open the menu and navigate to the Template Suites page.

Create your template suite. Click the icon at the bottom right of the page and type a name for your suite, then click .[+] Add

Connect a zone from which you wish to receive messages. Click on the icon in the Connected Zones section, select your zone and [+]
click .Connect

Company Confidential

3.

4. Add Status Change Template to the Suite. Click on the icon in the Templates section, under Choose from presets tab, enter the URL of[+]
your endpoint and add the necessary request headers. Then select the Status Change preset and click .Add

You should start receiving messages at your specified endpoint. You can check the HTTP History Page for the status of HTTP calls and call
history.

If you don’t have positioned sensors and a functional Base Station, you can use Virtual Devices for testing your HTTP Suites.

Company Confidential

Standard Templates (Direct & Smart)
Direct vs Smart message types
Preset Templates for Direct Message Types (Editable format)

Status Change
User Registration
Heartbeat

Preset Templates for Smart Message Types (Fixed format)

Group Availability
Parking Session

Direct vs Smart message types

Direct Message Types are actually raw messages received from sensors, which are formatted into JSON. You are able to configure a message
of this types of processing scenario and set up your own HTTP-body format.

Smart message types have a pre-defined template body that cannot be changed. These messages are the results of the Nwave Parking
Analytics system. They support the following features:

Automatic parking session correction and parking session integrity in the event of message loss
Occupancy event deduplication in the event of two occupancies (unmarked bays only)
Filtering of extremely short parking sessions (unmarked bays only)
Advanced handling of unmarked bay occupancies
Easy transition to RabbitMQ protocols (RTA & Parking Sessions) due to identical structure

Category Message Type Description

Direct Status Change status change message is sent from a sensor when its value has been
changed (occupancy state for parking sensor or number of detected cars for
car counters

Heartbeat heartbeat message is sent after every constant time period of unchanging
sensor state

User Registration user registration message is sent when a user is authorized on the sensor
using a Bluetooth-tag

Smart Group Occupancy status change message in a group format with group summary

Parking Sessions smart parking session messages formed by Nwave’s backend, with auto-
correction for lost messages

Preset Templates for Direct Message Types (Editable format)

These are template bodies of the template presets available at your console. You can create custom templates for each direct message type
and the templates below can be used as a starting point.

Message Type Template Body

Smart message types are for payment applicationsrecommended

Company Confidential

Status Change

{
 "device_id": "{device_id}",
 "position":{
 "network_id": "{network_id}",
 "custom_id": "{custom_id}",
 "latitude": {latitude},
 "longitude": {longitude},
 "group_inner_id": {group_inner_id},
 "group":{
 "id": {group_id},
 "name": "{group_name}",
 "zone_id": {zone_id}
 }
 },
 "message_type": "status_change",
 "occupied": "{"occupied" if parsed
["occupation_status"] is True else "free"}",
 "previous_occupancy_status_duration_min": {parsed
["previous_occupancy_status_duration_min"]},
 "voltage_V": {parsed["voltage_V"]}
}

Company Confidential

message_type - message type;
message_trace_id - system message-id;
occupied - parking occupancy status ("occupied" or "free");
previous_status_duration_min - duration of previous sensor status;
voltage_V - device’s voltage

{
 "device_id": "10000",
 "position":{
 "network_id": "908db095-e113-4248-998b-
694c33850bbe",
 "custom_id": "B03",
 "latitude": 1.01,
 "longitude": -3.732,
 "group_inner_id": 1,
 "group":{
 "id": 1,
 "name": "Group Name",
 "zone_id": 1
 }
 },
 "message_type": "status_change",
 "occupied": "occupied",
 "previous_occupancy_status_duration_min": 15,
 "voltage_V": 3.1
}

Company Confidential

User
Registration {

 "device_id": "{device_id}",
 "position":{
 "network_id": "{network_id}",
 "custom_id": "{custom_id}",
 "latitude": {latitude},
 "longitude": {longitude},
 "group_inner_id": {group_inner_id},
 "group":{
 "id": {group_id},
 "name": "{group_name}",
 "zone_id": {zone_id}
 }
 },
 "message_type": "user_registration",
 "occupied": "{"occupied" if parsed
["occupation_status"] is True else "free"}",
 "voltage_V": {parsed["voltage_V"]},
 "auth_ble_tag": {
 "tag_id": "{parsed["user_ID"]}",
 "event_time": "{message_time}"
 }
}

Company Confidential

message_type - message type;
message_trace_id - system message-id;
parking_session_iterator - short serial number of parking session. Iterator (number) is incrementing when new
parking session starts (0-7);
occupied- parking occupancy status ("occupied" or "free");
voltage_V - device’s voltage;
auth_ble_tag

tag_id - an ID of Bluetooth tag which was used for authorization;
event_time - message reception time.

{
 "device_id": "10000",
 "position":{
 "network_id": "908db095-e113-4248-998b-
694c33850bbe",
 "custom_id": "B03",
 "latitude": 1.01,
 "longitude": -3.732,
 "group_inner_id": 1,
 "group":{
 "id": 1,
 "name": "Group Name",
 "zone_id": 1
 }
 },
 "message_type": "user_registration",
 "occupied": "occupied",
 "voltage_V": 3.1,
 "auth_ble_tag": {
 "tag_id": "123ABC00",
 "event_time": "2021-01-01T00:00:00.000000+00:00"
 }
}

Company Confidential

Heartbeat

{
 "device_id": "{device_id}",
 "position":{
 "network_id": "{network_id}",
 "custom_id": "{custom_id}",
 "latitude": {latitude},
 "longitude": {longitude},
 "group_inner_id": {group_inner_id},
 "group":{
 "id": {group_id},
 "name": "{group_name}",
 "zone_id": {zone_id}
 }
 },
 "message_type": "heartbeat",
 "occupied": "{"occupied" if parsed
["occupation_status"] is True else "free"}",
 "heartbeat_message_counter": {parsed
["heartbeat_message_counter"]},
 "voltage_V": {parsed["voltage_V"]}
}

Company Confidential

message_type - message type;
message_trace_id - system message-id;
occupied - parking occupancy status ("occupied" or "free");
heartbeat_message_counter - the value increases for every following heartbeat during single occupancy state
(0-11);
voltage_V - device’s voltage

{
 "device_id": "10000",
 "position":{

"network_id": "908db095-e113-4248-998b-
694c33850bbe",

"custom_id": "B03",
"latitude": 1.01,
"longitude": -3.732,
"group_inner_id": 1,
"group":{

"id": 1,
"name": "Group Name",
"zone_id": 1

}
 },
 "message_type": "heartbeat",
 "occupied": occupied",
 "heartbeat_message_counter": 2,
 "voltage_V": 3.1
}

Preset Templates for Smart Message Types (Fixed format)

These are examples of HTTP request bodies produced by smart templates. They but you can use the example requests as cannot be modified
reference.

Message Type Example Request Body

Group
Availability {

 "timestamp": "2021-01-01T00:00:00.000000+00:00",
 "group_id": 1,
 "project_id": 1,
 "group_custom_id": "Group Custom ID",
 "level_id": null,
 "floor_number": null,
 "positions_availability":[

{
"position":{

"id": 1,
"network_id":"00000000-0000-0000-0000-

000000000001",

Company Confidential

"custom_id": "Custom ID 1",
"group_inner_id": 1,
"lat": 52.406063006389,
"lon": -1.5157277658969

},
"occupation_status":"occupied"

},
{

"position":{
"id": 2,
"network_id":"00000000-0000-0000-0000-

000000000002",
"custom_id": "Custom ID 2",
"group_inner_id": 2,
"lat": 52.406022747069,
"lon": -1.5157359155385

},
"occupation_status":"occupied"

},
{

"position":{
"id": 3,
"network_id":"00000000-0000-0000-0000-

000000000003",
"custom_id": "Custom ID 3",
"group_inner_id": 3,
"lat": 52.406101689254,
"lon": -1.515721405201

},
"occupation_status":"n/a"

}
],
 "summary":{

"total": 3,
"occupied": 2,
"available": 0,
"undefined": 1

 }
}

Parking Session

{
 "parking_session_uuid": "d8f7d4b3-a26c-4921-a488-
489de273bcf6",
 "involved_devices":[

{
"device_id": "100AA",
"hardware_type": "Sparkit Surface V3.9",

Company Confidential

"position":{
"network_id":"00000000-0000-0000-0000-

0000000100aa",
"custom_id": null,
"latitude": 52.40602,
"longitude": -1.5157359,
"group":{

"id": 1,
"type": "marked_spaces",
"name": "Group Name 1",
"custom_id": "Group Custom ID",
"zone_id": 1,
"level_id": null,
"floor_number": null,
"zone":{

"id": 1,
"project_id": 1

}
},
"group_inner_id":1

}
}

],
 "correction_counter": 0,
 "session_start":{

"event_time":"2021-01-01T00:00:00.000000+00:00",
"delta_time_sec": 0,
"message_trace_ids":[

"d8cd1146-21f7-3906-21e4-8f55534f6573"
]

 },
 "partial_end":{

"event_time": "string" // timestamptz, yyyy-MM-
dd'T'HH:mm:ss.SSSXXX (2019-06-13T16:16:51.000+00:00)

"delta_time_sec": "integer",
"message_trace_ids":["strings"],
"network_id": "string", // unexpectedly

released position
"custom_id": "string"

 },
 "session_end": {

"event_time": "2021-01-01T01:00:00.000000+00:00",
"delta_time_sec": 0,
"message_trace_ids": [

"71bfb22e-3569-d7c1-26fd-a2a0d0febb7a"
],

 },
 "auth_ble_tag": {

"tag_id": "string",
"event_time": "string"

Company Confidential

 },
 "auth_mobile": {

"session_id": "string",
"event_time": "string"

 }
}

Company Confidential

Custom Templates
Templating Engine
Common Attributes
Distinct Attributes

Status Change
Heartbeat
User Registration

Custom Templates are possible for Direct Message Types. You can read more about message types and standard templates . If you need here
more data than provides a standard template, you are able to create your own template. For doing this you need to use a special Templating
Language, which is being processed by Templating Engine.

Templating Engine

The HTTP template language is a language of transforming data based on the python 3 language syntax.

There are two main functions of a template language:

getting the source data attribute values;
operations over the source data attribute values.

For retrieving a value of any attribute from source data you need to use the source data attribute name surrounded by braces. This rule works for
all fields except for fields For retrieving any value from parsed data you need to use the following format: parsed data . {parsed['<field

.name>']}

Examples:

{modem_id} - gets device ID hex;
{data} - gets full raw message;
{message_time} - gets a UNIX timestamp;
{parsed['voltage_V']} - gets battery voltage information.

More complex example:

This URL template creates a URL that contains a position’s network ID and occupancy status:

http://example.com/parking?id={network_id}&occupied={parsed['occupation_status']}

Nwave supports some operations over the source data values if pure values are not usable or can be converted to a more convenient format.

Operations:

IF-THEN-ELSE operator in Python style ;{<result if true> if <condition> else <result if false>}

pow(a, b) - returns a value of x to the of y (x);power y

str(obj) - stringifies an object;
hex(int) - returns a representation of an integer value;hexadecimal
int(str, base) - returns an integer representation of a string;
len(str) - returns the length of a string argument;
iso8601(ts) - returns ISO8601 representation of a timestamp;
<obj>[index] - accesses string characters by index;
obj[a:b:c] - slice operator which works the same as the Pyhton language;
+, I, *, /, *, //, **, % - standard Python language operators.

Example:

This body example returns JSON which contains a position network id, occupation status in the format “occupied”/”free” and message receiving
timestamp in ISO8601 format:

Company Confidential

{
 "timestamp": "{iso8601(message_time)}",
 "space_network_address": "{network_id}",
 "new_status": "{"occupied" if parsed["occupation_status"] is True
else "free"}"
}

Using the template functionality, you can even create custom formatting request, where the format is changed depends on source data values.
The following snippet shows how to create an empty request if a raw message is too short, but if the data is too long, the template will add a
message payload tail as a query argument:

http://example.com{(('?tail=%s' % data[6:]) if (len(data) >= 6) else '')}

You can use templates in URLs and request bodies.

Common Attributes

The following attributes are available for all message types:

Attribute Template Usage Type Description

message_trace_id

"{message_trac
e_id}"

str message trace id UUID format

message_time

"{message_time
}"

str time of receiving a message from a base station

received_time

"{received_tim
e}"

str time of receiving a message by the Nwave cloud

device_id

"{device_id}"

str device ID in hex format

device_id_dec

{device_id_dec}

int device ID in decimal format

String attributes should be wrapped in quotes.

Company Confidential

signal

{signal}

float message signal level

data

"{data}"

str raw message payload in hex format

station_id

{station_id}

int ID of a station that got the message

custom_id

"{custom_id}"

str bound position custom ID or '?' if a custom ID was not set

latitude

{latitude}

float latitude parameter of a position

longitude

{longitude}

float longitude parameter of a position

floor_number

{floor_number}

int position's floor number

network_id

"{network_id}"

str network ID of a position

zone_id

{zone_id}

int decimal zone ID of a position

group_id

{group_id}

int decimal group ID of a position

Company Confidential

group_name

"{group_name}"

str group name which a position belongs to

group_inner_id

{group_inner_i
d}

int inner ID of a position in a group

Distinct Attributes

Attributes that are different for each message type are accessible under the key.parsed

Message
Type

Attribute Template Usage Type Description

Status
Change

voltage_V

{parsed
["voltage_V"]}

float device’s battery voltage

parking_session_iterator

{parsed
["parking_sessi
on_iterator"]}

int a number which is incremented after every
occupancy

Not available for LoRa sensors

occupation_status

{parsed
["occupation_st
atus"]}

boolean “true” if a sensor is occupied, otherwise - “false”

previous_occupancy_stat
us_duration_min

{parsed
["previous_occu
pancy_status_du
ration_min"]}

int duration of a sensor previous state, this field can
help if the previous message was not received by
any station

Heartb
eat

voltage_V

{parsed
["voltage_V"]}

float device’s battery voltage

Company Confidential

parking_session_iterator

{parsed
["parking_sessi
on_iterator"]}

int a number which is incremented after every
occupancy

Not available for LoRa sensors

occupation_status

{parsed
["occupation_st
atus"]}

boolean “true” if a sensor is occupied, otherwise - “false”

heartbeat_message_cou
nter

{parsed
["heartbeat_mes
sage_counter"]}

int number of heartbeat messages sent during an
unchanged occupancy state

User
Registr
ation

voltage_V

{parsed
["voltage_V"]}

float device’s battery voltage

parking_session_iterator

{parsed
["parking_sessi
on_iterator"]}

int a number which is incremented after every
occupancy

Not available for LoRa sensors

occupation_status

{parsed
["occupation_st
atus"]}

boolean “true” if a sensor is occupied, otherwise - “false”

user_ID

"{parsed
["user_ID"]}"

str an ID of Bluetooth tag which was used for
authorization

Company Confidential

HTTP Templates and Suites

HTTP Templates

HTTP Template is a rule of building an outgoing HTTP request. A template specified a rule of building request method, URL, HTTP headers, and
request body. A template is applied to an incoming message from devices, which has been parsed and enriched by information about the device.
For the convenient building of templates, Nwave created a special template language which will be explained further in this document.

HTTP template may be applied to all messages coming from a device or only to one type of message. Nwave supports the following messages
types:

All - apply a template to all types of messages;
Status Change - status change message is sent from a sensor when its value has been changed (occupancy state for parking sensor or
number of detected cars for car counters);
Heartbeat - heartbeat message is sent after every constant time period of unchanging sensor state;
Calibration - this type of message is sent after a sensor calibration performed using Nwave mobile apps;
User Registration - user registration message is sent when a user is authorized on the sensor using a Bluetooth-tag;
Error - this type of message is sent only by car counters when some hardware, software or environment problem has been detected by a
sensor;
General - general type is used for data coming from devices flashed by custom firmware.

HTTP request source data

HTTP request service builds requests based on a user-defined template and incoming data which contains the following fields:

message_trace_id - a message trace id;
message_time - a time of receiving a message from a base station;
received_time - a time of receiving a message by the Nwave cloud;
device_id - a device ID in hex format;
device_id_dec - a device ID in decimal format;
signal - a message signal level;
data - a raw message payload in hex format;
station_id - an ID of a station that got the message;
custom_id - a bound position custom ID or '?' if a custom ID was not set;
latitude - a latitude parameter of a position;
longitude - a longitude parameter of a position;
level - position's level (e.g. ground, 1st);
network_id - a network ID of a position;
zone_id - a decimal zone ID of a position;
group_id - a decimal group ID of a position;
group_name - a group name which a position belongs to;
group_inner_id - an inner ID of a position in a group;
parsed - a parsed message. It contains different data, depending on device type, firmware type, and message type.

Parking sensor parsed message objects

Status Change

voltage_V - device’s battery voltage;
parking_session_iterator - a number which is incremented after every occupancy;
occupation_status - “true” if a sensor is occupied, otherwise - “false”;
previous_occupancy_status_duration_min - duration of a sensor previous state, this field can help if the previous message was not
received by any station.

Heartbeat

voltage_V - device’s battery voltage;
parking_session_iterator - a number which is incremented after every occupancy;
occupation_status - “true” if a sensor is occupied, otherwise - “false”;
heartbeat_message_counter - number of heartbeat messages sent during an unchanged occupancy state.

Calibration

voltage_V - device’s battery voltage;
hardware_reset - “true” if a message caused by a device’s periodical self-reset;
noisy_environment - “true” if an environment is too noisy for the calibration process

Company Confidential

User Registration

voltage_V - device’s battery voltage;
parking_session_iterator - a number which is incremented after every occupancy;
occupation_status - “true” if a sensor is occupied, otherwise - “false”;
user_ID - an ID of Bluetooth tag which was used for authorization.

Car Counter parsed message object

Status Change

voltage_V - device’s battery voltage;
car_counter - number of detected cars.

Error

voltage_V - device’s battery voltage;
first_calibration - “true” if a message is caused by calibration via mobile app;
magnetometer_calibration_error - an error while magnetometer calibration or self-calibration;
magnetometer_calibration_timeout - “true” if hardware error occured;
reading_error - “true” if there are some problems with onboard sensor's data reading;
sensor_power_supply_too_low - “true” if battery level is too low;
hardware_reset - “true” if a message caused by a device periodical self-reset.

HTTP template language

The HTTP template language is a language of transforming data based on the python 3 language syntax.

There are two main functions of a template language:

getting the source data field values;
operations over the source data field values.

For retrieving a value of any field from source data you need to use source data field name surrounded by braces. This rule works for all fields
except for fields For retrieving any value from parsed data you need to use the following format: .parsed data . {parsed['<field name>']}

Examples:

{modem_id} - gets device ID hex;
{data} - gets full raw message;
{message_time} - gets a UNIX timestamp;
{parsed['voltage_V']} - gets battery voltage information.

More complex example:

This URL template creates a URL that contains a position’s network ID and occupancy status:

http://example.com/parking?id={network_id}&occupied={parsed['occupation_status']}

Nwave supports some operations over the source data values if pure values are not usable or can be converted to a more convenient format.

Operations:

IF-THEN-ELSE operator in Python style ;{<result if true> if <condition> else <result if false>}

pow(a, b) - returns a value of x to the of y (x);power y

str(obj) - stringifies an object;
hex(int) - returns a representation of an integer value;hexadecimal
int(str, base) - returns an integer representation of a string;
len(str) - returns the length of a string argument;
iso8601(ts) - returns ISO8601 representation of a timestamp;
<obj>[index] - accesses string characters by index;
obj[a:b:c] - slice operator which works the same as the Pyhton language;
+, I, *, /, *, //, **, % - standard Python language operators.

Example:

Company Confidential

This body example returns JSON which contains a position network id, occupation status in the format “occupied”/”free” and message receiving
timestamp in ISO8601 format:

{
 "timestamp": "{iso8601(message_time)}",
 "space_network_address": "{network_id}",
 "new_status": "{"occupied" if parsed["occupation_status"] is True
else "free"}"
}

Using the template functionality, you can even create custom formatting request, where the format is changed depends on source data values.
The following snippet shows how to create an empty request if a raw message is too short, but if the data is too long, the template will add a
message payload tail as a query argument:

http://example.com{(('?tail=%s' % data[6:]) if (len(data) >= 6) else '')}

You can use templates in URLs and request bodies.

HTTP Template suites

HTTP template suites are used for uniting HTTP templates, which are applied to different (or the same) message types. Also, HTTP Template
Suites are data routing entities. You can configure data routing from a device’s zone or a group only to an HTTP Template Suite, but not to an
individual HTTP Template.

Company Confidential

1.
2.

1.

2.

3.

Rabbit MQ Broker AWS Setup
This is a step-by-step guide on how to set up a RabbitMQ broker in the Amazon MQ service.

However, you can also choose to set up and manage the RabbitMQ broker on your own server.

Detailed information about the Amazon MQ service can be found in .the official AWS documentation

The configuration of a RabbitMQ broker consists of 2 steps:

Broker creation
Broker configuration

Broker creation

Find service using the search panel“Amazon MQ”

Click on the button “Get started”

Select “Rabbit MQ” engine and click “Next”

Company Confidential

3.

4.

5.

For simplicity choose the . If you wish to set up a more reliable cluster deployment please refer to single-instance broker the official
.documentation

Configure the settings.

Brocker name guide-broker broker identifier in the Amazon MQ service

Brocker instance type mq.t3.micro You can select the smallest instance for now

Larger instances will be required for over 100,000 devices

Username guide_user

Password <your password>

Fill out the form and click :”Next”

Please your username and password as it will be required for broker configuration and integration.save

Company Confidential

1. You can review your broker configuration on the last screen. Click to finalize the creation procedure.“Create broker”

Company Confidential

1.

2.

1.

Now you see the list of brokers. Wait until the new broker status will change to .“Running“

The broker creation is complete. Now you can proceed to the next step.

Broker configuration

The broker configuration step explains how to configure RabbitMQ Queue, RabbitMQ Exchange and bind the queue to the exchange.

Go to Amazon MQ Brockers page

Company Confidential

1.

2.

3.

4.

Click on the broker name which was created in the previous step.

In the Connections section, you can find the . You will need this URL to configure the integration Nwave.Endpoint URL

Click on the “RabbitMQ web console” link to continue broker configuration

Company Confidential

4.

5.

6.

In the newly opened tab, you must enter the username and password used during broker creation in the previous step

Now you have to register a new Virtual Host. Go to select menu on the right and click on expanding form “Admin Page”, “Virtual Hosts”
“Add a new virtual host”

Company Confidential

6.

7.

8.

Give a name to your new virtual host and click on the button.“Add virtual host”

Now you can see the create virtual host in the table

Company Confidential

8.

9.

10.

Now you have to create a new exchange. Go to the menu and click on the expanding form “Exchanges” “Add a new exchange”

Fill the exchange creating form. You should select the virtual host created in the previous step and give a new to the exchange. The name
 is needed for integration with Nwave Cloud. Fill all other options as on the screenshot:exchange name

Company Confidential

10.

11.

12.

Click on the button “Add exchange” to finish the exchange registration.
Now you have to create a new Queue. Go to the menu and click on expanding form ““Queues” Add a new queue”

Fill the form. You should select previously create Virtual Host and give a name to your queue. Remember the . It is needed queue name
for Nwave Cloud integration.

Company Confidential

12.

13.

14.

Click on the button to finish.“Add queue”
Now click on the Queue name in the table

Open the form “Bindings”

Company Confidential

14.

15. Fill in the previously registered exchange name and queue name

Finally, press the button .“Bind”

Company Confidential

1.

2.

Integration credentials

Here is the list of all credentials than you need to proceed integration with Nwave Cloud:

Broker URL
Username
Password
Virtual Host
Exchange name
Queue name

Now you can proceed to the integration with Nwave Cloud.

Integration with Nwave Cloud

Go to the main menu

Go to the RabbitMQ Endpoints page

Company Confidential

2.

3.
4.

Click on the button at the bottom right
Fill out the “New endpoint” form:

Name - user-defined
Host - the endpoint URL excluding prefix and excluding the postfix“amqps://” “:port“
Port - 5671
VHost - your virtual hostname
Exchange - your exchange name
Exchange is durable - yes, because this option was selected during the exchange registration
Exchange type - Direct, because this option was selected during the exchange registration
Queue - your queue name
Login - your broker’s username
Password/Repeat password - your broker’s password

Company Confidential

4.

Company Confidential

4.

5.

6.

Click on the “Add” button.
Now you should see the created Endpoint in the Endpoints table:

Go to the Routes menu to continue the integration

Company Confidential

6.

7.
8.

Click on the button in the bottom right
Fill the form. Select Zone for sending data to RabbitMQ, your previously created Endpoint and message type. Toggle option if you Active
want to start sending data after the route is created:

Company Confidential

8.

Press the button to finish the route registration.“Add”

Integration testing

To test the integration you should wait until your sensor sends at least one message. The sensor should be positioned in the zone, which was
selected during the route registration. All messages sent to your RabbitMQ broker are displayed on the RabbitMQ History page:

Also, you can check if your RabbitMQ broker is receiving messages. Go to the RabbitMQ broker administration page, find your queue on the
Queues page and click on the name of your queue. You should see message processing statistics:

Company Confidential

Company Confidential

RabbitMQ Group Availability
RabbitMQ Group Availability API is capable of sending updates about parking occupancy with a calculated summary. When you use this API, you
are getting complete occupancy info about parking. Nwave cloud calculates the number of occupied and vacant spaces according to parking
type, parking sensors health and other secondary data.

Group Availability message structure

{
 "timestamp": string ISO8601,
 "group_id": integer,
 "group_custom_id": string,
 "level_id": int,
 "floor_number": int,
 "positions_availability": [
 {
 "position": {
 "id": int,
 "network_id": UUID,
 "custom_id": string,
 "group_inner_id": int,
 "lat": real,
 "lon": real
 },
 "occupation_status": string //'occupied' / 'free' / 'n/a'
 }
 ...
],
 "summary": {
 "total": int,
 "occupied": int,
 "available": int,
 "undefined": int
 }
}

where:

timestamp - message generation time
group_id - parking group id
group_custom_id - user-defined ID of a parking group
level_id - identified of a level object which describes parking floor
floor_number - parking floor number
positions_availability - list of parking spaces in a parking group with their IDs, geo-locations and occupancy statuses
summary - an object which describes a number of parking spaces inside of parking and a number of occupied and vacant spaces

Company Confidential

RabbitMQ Parking Sessions
Parking Session Logging
General Info
API details

Data objects
Objects description

Examples

Session start message
Session end message
Partial-end message
Session edges correction

Endpoint & Route Setup

Parking Session Logging

The second generation of Parking Session Logging API is designed for comprehensive representation.parking session

It provides robust session integrity control and auto-correction service in the case of partial sensor message loss.

This API allows customers to focus on business applications of instead of postprocessing of individual sensor occupancies.parking sessions

This API includes sensors’ positioning, grouping and zoning attributes so that your data receiving service can be stateless.

General Info

The API can be used with all types of parking lots: marked spaces, open bays, off-street parking and garages.

Please, watch the video at the end of this document to learn how to set up RabbitMQ Endpoint in the .Nwave Console

API details

Data objects

Every parking session is described by the following data structure:

{
 "parking_session_uuid": "string",
 "correction_counter": integer,
 "session_start":{
 "event_time": "string" // timestamptz, yyyy-MM-dd'T'HH:mm:ss.
SSSXXX (2019-06-13T16:16:51.000+00:00)
 "delta_time_sec": integer,
 "message_trace_ids":["strings""]
 },
 "partial_end":{
 "event_time": "string" // timestamptz, yyyy-MM-dd'T'HH:mm:ss.
SSSXXX (2019-06-13T16:16:51.000+00:00)
 "delta_time_sec": "integer",
 "message_trace_ids":["strings"],
 "network_id": "string", // unexpectedly released position
 "custom_id": "string"
 },
 "session_end":{
 "event_time": "string" // timestamptz, yyyy-MM-dd'T'HH:mm:ss.

Company Confidential

SSSXXX (2019-06-13T16:16:51.000+00:00)
 "delta_time_sec": integer,
 "message_trace_ids":["strings"]
 },
 "involved_devices":[
 {
 "serial_id": "string", # deprecated
 "device_id": "string",
 "hardware_type": "string",
 "position":{
 "network_id": "string",
 "custom_id": "string",
 "latitude": float,
 "longitude": float,
 "group":{
 "id": int,
 "type": "string",
 "name": "string",
 "custom_id": "string",
 "zone_id": int,
 "level_id": int,
 "level_name": "string",
 "floor_number": int
 },
 "group_inner_id": int,
 }
 },
 ...
],
 "auth_ble_tag": {
 "tag_id": "string",
 "event_time": "string"
 },
 "auth_mobile": {
 "session_id": "string",
 "event_time": "string"
 }
}

Objects description

parking_session_uuid - a unique parking session-id;

correction_counter - total number of corrections.

Company Confidential

"session_start":{
 "event_time":string // timestamptz, yyyy-MM-dd'T'HH:mm:ss.SSSXXX
(2019-06-13T16:16:51.000+00:00)
 "delta_time_sec":integer,
 "message_trace_ids":[strings]
}

The object session_startis sent to open a parking occupancy session:

event_time - a session start timestamp;

delta_time_sec - an error of session start time in seconds;

message_trace_ids - tracing identifiers of raw device messages related to the session start

"session_end":{
 "event_time":string // timestamptz, yyyy-MM-dd'T'HH:mm:ss.SSSXXX
(2019-06-13T16:16:51.000+00:00)
 "delta_time_sec":integer,
 "message_trace_ids":[strings]
}

The object session_end is sent to close a parking occupancy session:

event_time - a session end timestamp;

delta_time_sec - an error of session end time in seconds;

message_trace_ids - tracing identifiers of raw device related to the session end.

"partial_end":{
 "event_time":string // timestamptz, yyyy-MM-dd'T'HH:mm:ss.SSSXXX
(2019-06-13T16:16:51.000+00:00)
 "delta_time_sec":integer,
 "message_trace_ids":[strings],
 "network_id":string,
 "custom_id":string
}

partial_end object can be received only for Open Bay parking type

A partial end is an event where two sensors were occupied in an open bay session but only one sensor was released. This is a temporary state
of parking sessions. A object will always be sent when the second sensor is released in that session.session_end

event_time - a timestamp of unexpected sensor release;

delta_time_sec - a timestamp error in seconds;

message_trace_ids - tracing identifiers of messages which describe unexpected release;

network_id - network_id of a sensor’s position that was unexpectedly released;

Company Confidential

custom_id- a user-defined identifier of a sensor’s position that was unexpectedly released.

"involved_devices":[
 {
 "serial_id":string,, # deprecated
 "device_id": string,
 "hardware_type":string,
 "position":{
 "network_id":string,
 "custom_id":string,
 "latitude":float,
 "longitude":float,
 "group":{
 "id":int,
 "type":string,
 "name":string,
 "custom_id":string,
 "zone_id":int,
 "level_id": int,
 "level_name": str,
 "floor_number": int
 },
 "group_inner_id":int,
 }
 },
 ...
]

involved_devices - a list which contains a description of parking sensors involved in a parking session;

serial_id - a parking sensor serial ID (deprecated);

device_id - a parking sensor serial ID;

hardware_type - a parking sensor hardware model;

position. - a position network_id;network_id

position. - a position user-defined identifier;custom_id

position. / - a position geolocation coordinates;latitude longitude

position. . - a position group ID;group id

position. . - a position group type. Possible values: , , ;group type general unmarked_parking_bay marked_parking_bay

position. . - a position group name;group name

position. . - a position group user-defined ID;group custom_id

position. . - an ID of a zone which contains positions group;group zone_id

position. . - an ID of level (floor) which contains positions group;group level_id

position. . - a Name of level (floor) which contains positions group;group level_name

position. . - a floor number which contains positions group;group floor_number

position. - an index number of a position in positions group.group_inner_id

Company Confidential

"auth_ble_tag": {
 "tag_id": str,
 "event_time": string
}

The object contains user authorization information if a user authorized on parking space using Nwave’s BLE-Tag;auth_ble_tag

tag_id - ID of BLE-Tag;

event_time- a timestamp of user authorization.

"auth_mobile": {
 "session_id": string,
 "event_time": string
}

The object contains user authorization information if a user authorized on a parking space using mobile application connected to auth_mobile
the Nwave One-Click Check-in service;

one_click_session_id - an ID of One-Click Check-in session;

event_time- a timestamp of user authorization.

Examples

Session start message

When a parking session starts, the Nwave cloud builds a message that contains only data about the sensor and time of parking session
beginning.

It can contain one or two described devices depending on the device’s group type.

Company Confidential

 {
 "parking_session_uuid": "e9fcc95e-b9cd-4e7f-b275-092a62daf61d",
 "involved_devices": [
 {
 "device_id": "a33b47",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "23f3e949-2dd3-47ca-b00f-c3310d4ce418",
 "custom_id": "684d395c-e875-422a-904d-c095ad981cc6",
 "latitude": 50.793682,
 "longitude": -1.0986286,
 "group": {
 "id": 1545,
 "type": "unmarked_parking_bay",
 "name": "cambridgepark32",
 "custom_id": "684d395c-e875-422a-904d-c095ad981cc6",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 1
 }
 }
],
 "correction_counter": 0,
 "session_start": {
 "event_time": "2021-01-26T07:48:40.121000+00:00",
 "delta_time_sec": 60,
 "message_trace_ids":
 [
 "d1b6d450-cc5f-83d4-adbe-c9f5383fb0d8"
]
 }
}

as you can see, the value of field is 60. It means, that real parking session start time is between delta_time_sec 2021-01-26T07:48:40 -
 and .60 sec 2021-01-26T07:48:40 + 60 sec

Session end message

Company Confidential

{
 "parking_session_uuid": "e9fcc95e-b9cd-4e7f-b275-092a62daf61d",
 "involved_devices": [
 {
 "device_id": "a33b47",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "23f3e949-2dd3-47ca-b00f-c3310d4ce418",
 "custom_id": "684d395c-e875-422a-904d-c095ad981cc6",
 "latitude": 50.793682,
 "longitude": -1.0986286,
 "group": {
 "id": 1545,
 "type": "unmarked_parking_bay",
 "name": "cambridgepark32",
 "custom_id": "684d395c-e875-422a-904d-c095ad981cc6",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 1
 }
 }
],
 "correction_counter": 0,
 "session_start": {
 "event_time": "2021-01-26T07:48:40.121000+00:00",
 "delta_time_sec": 60,
 "message_trace_ids": [
 "d1b6d450-cc5f-83d4-adbe-c9f5383fb0d8"
]
 },
 "session_end": {
 "event_time": "2021-01-26T07:51:26.466000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "06f75246-20e5-9d48-404b-fa965bbdefe7"
]
 }
}

Partial-end message

Partial-end is possible only for unmarked group type when a car parks on 2 neighbouring sensors. When a car releases only a single sensor, the
partial-end message is sent. When the car releases the second sensor, the session end message is sent. This event can happen when a car
tries to join traffic on a busy road.

Here we show an example of the partial-end message:

Company Confidential

{
 "parking_session_uuid": "da2ecb68-efb1-458e-ba5d-e5ba80b87f6e",
 "involved_devices": [
 {
 "device_id": "33c83",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "00000000-0000-0000-0000-000000033c83",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "latitude": 50.780323,
 "longitude": -1.0682689,
 "group": {
 "id": 1729,
 "type": "unmarked_parking_bay",
 "name": "5EastneyEsplanade",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 54
 }
 }, {
 "device_id": "33e5f",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "00000000-0000-0000-0000-000000033e5f",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "latitude": 50.78033,
 "longitude": -1.0682275,
 "group": {
 "id": 1729,
 "type": "unmarked_parking_bay",
 "name": "5EastneyEsplanade",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 55
 }
 }
],
 "correction_counter": 0,
 "session_start": {
 "event_time": "2021-01-26T09:54:08.287000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "65ab2a63-e7c2-8674-aa3d-7047cb428a31"
]

Company Confidential

 },
 "partial_end": {
 "event_time": "2021-01-26T10:03:23.900000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "56d9035a-e4dc-9661-0804-a968d9a92d0b"
],
 "network_id": "00000000-0000-0000-0000-000000033e5f",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386"
 }
}

In the example above you can see that object “partial-end” contains only one sensor.

When the second sensor in the session is released, the Nwave cloud will add a “session-end” object to the end of the partial-end message.
Click here to expand...

 {
 "parking_session_uuid": "da2ecb68-efb1-458e-ba5d-e5ba80b87f6e",
 "involved_devices": [
 {
 "device_id": "33c83",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "00000000-0000-0000-0000-000000033c83",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "latitude": 50.780323,
 "longitude": -1.0682689,
 "group": {
 "id": 1729,
 "type": "unmarked_parking_bay",
 "name": "5EastneyEsplanade",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 54
 }
 }, {
 "device_id": "33e5f",
 "hardware_type": "Sparkit Surface V3.9",
 "position": {
 "network_id": "00000000-0000-0000-0000-000000033e5f",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "latitude": 50.78033,
 "longitude": -1.0682275,
 "group": {
 "id": 1729,
 "type": "unmarked_parking_bay",

Company Confidential

 "name": "5EastneyEsplanade",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386",
 "zone_id": 5,
 "level_id": null,
 "floor_number": null
 },
 "group_inner_id": 55
 }
 }
],
 "correction_counter": 0,
 "session_start": {
 "event_time": "2021-01-26T09:54:08.287000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "65ab2a63-e7c2-8674-aa3d-7047cb428a31"
]
 },
 "partial_end": {
 "event_time": "2021-01-26T10:03:23.900000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "56d9035a-e4dc-9661-0804-a968d9a92d0b"
],
 "network_id": "00000000-0000-0000-0000-000000033e5f",
 "custom_id": "cd4206ec-6876-4eca-b859-d5735dd97386"
 },
 "session_end": {
 "event_time": "2021-01-26T10:16:10.116000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "8182f7b8-f5bf-2084-aac8-0b3412965a84"
]
 }
}

Session edges correction

As you can see in the examples above, all the messages contain the field. This field and the field correction_counter parking_session_u
 allows you to apply corrections to parking sessions in the right order.uid

Parking session correction is an important functionality of Parking Session Logging API. The wireless data reception is not ideal, so some
messages may be lost. To minimize this effect, Nwave recommends to use at least 2 stations in the same area, but message loss is still possible.
Nwave Cloud analyzes additional data from parking sensors and recovers most of the lost messages. When a message is recovered, the Nwave
Cloud analyzes occupancy history and makes a correction. It may correct the session’s start or end time as well as create new parking sessions.

For example, let’s consider 2 messages describing the parking session starting:

Company Confidential

{
 "parking_session_uuid": "da2ecb68-efb1-458e-ba5d-e5ba80b87f6e",
 "involved_devices": [
 {
 ...
 }
],
 "correction_counter": 0,
 "session_start": {
 "event_time": "2021-01-26T09:54:08.287000+00:00",
 "delta_time_sec": 120,
 "message_trace_ids": [
 "65ab2a63-e7c2-8674-aa3d-7047cb428a31"
]
 },
 ...
}

The message above contains the object with field equal to 0 and field equal to 0. session_start delta_time_sec correction_counter
The following message corrects the previous one and decreases session start time delta.

{
 "parking_session_uuid": "da2ecb68-efb1-458e-ba5d-e5ba80b87f6e",
 "involved_devices": [
 {
 ...
 }
],
 "correction_counter": 1,
 "session_start": {
 "event_time": "2021-01-26T09:55:32.944000+00:00",
 "delta_time_sec": 0,
 "message_trace_ids": [
 "857e7628-38d4-4497-9229-c25d78096d52"
]
 },
 ...
}

As you can see, the correction message contains the same , incremented and more accurate parking_session_uuid correction_counter
. The second message contains different “message”trace_ids”event_time

Endpoint & Route Setup
RMQ Endpoint & Routes Video.mp4

Company Confidential

RabbitMQ Consumer Code Examples
Here you can find consumers examples using different programming languages.

The official RabbitMQ site contains a very useful . But if you want to run your consuming application right now, you tutorial with code examples
can use examples on this page

Connection parameters

All of these examples use the following connection parameters:

Protocol:

AMQP - if you don’t use SSL connection
AMQPS - if you use SSL connection. This protocol is used by default on AWS managed RabbitMQ.

Hostname
Username
Password
Port (usually it is 5671 or 5672)
Virtual hostname (vHost)
Exchange name
Queue name

All our examples use exchange type “direct” and “durable” exchanges and queues.

Examples

JavaScript

Java script example code uses package . Please, install the package before proceeding with an example:amqplib

npm install amqplib

Now you are able to fill in your connection parameters into the script and start consuming:

Company Confidential

#!/usr/bin/env node

var amqp = require('amqplib/callback_api');

var broker_url = 'amqps://<username>:<password>@<host>:<port>/<vhost>'
var exchange = '<exchange_name>'
var queue = '<queue_name>'

amqp.connect(broker_url, function(error0, connection) {
 if (error0) {
 throw error0;
 }
 connection.createChannel(function(error1, channel) {
 if (error1) {
 throw error1;
 }

 channel.assertExchange(exchange, 'direct', {
 durable: true
 });

 channel.assertQueue(queue, {
 durable: true
 }, function(error2, q) {
 if (error2) {
 throw error2;
 }

 channel.bindQueue(q.queue, exchange, queue);

 console.log(' [*] Waiting for data. To exit press CTRL+C');
 channel.consume(q.queue, function(msg) {
 console.log(" [x] %s: '%s'", msg.fields.routingKey, msg.content.
toString());
 }, {
 noAck: true
 });
 });
 });
});

Python

Python example uses package :pika

Company Confidential

pip install pika

This example code is able to run with using Python 3.6 or higher. You can remove f-string using and run the code on earlier Python3 version.

#!/usr/bin/env python3.8

import pika
import sys
import os

RMQ_QUEUE = '<queue_name>'
RMQ_HOST = '<host>'
RMQ_PORT = <port>
RMQ_VHOST = '<vhost>'
RMQ_LOGIN = '<username>'
RMQ_PASS = '<password>''
RMQ_EXCHANGE = '<exchange_name>'

URL = f'amqp://{RMQ_LOGIN}:{RMQ_PASS}@{RMQ_HOST}:{RMQ_PORT}/{RMQ_VHOST}'

def main():

 parameters = pika.URLParameters(URL)
 rmq_connection = pika.BlockingConnection(parameters)
 rmq_channel = rmq_connection.channel()
 rmq_channel.exchange_declare(
 exchange=RMQ_EXCHANGE,
 exchange_type='direct',
 durable=True
)
 rmq_channel.queue_declare(
 queue=RMQ_QUEUE,
 durable=True
)

 def callback(ch, method, properties, body):
 print(" [x] Received %r" % body)

 rmq_channel.basic_consume(
 queue=RMQ_QUEUE,
 on_message_callback=callback,
 auto_ack=True
)

 print(' [*] Waiting for messages. To exit press CTRL+C')

Company Confidential

 rmq_channel.start_consuming()

if __name__ == "__main__":
 try:
 main()
 except KeyboardInterrupt:
 print('Interrupted')
 try:
 sys.exit(0)
 except SystemExit:
 os._exit(0)

Company Confidential

RabbitMQ Car Counter

Car Counting service

Standard updates
Faster updates

API details

Car Counting service

Car counting service processes data from car counters. Car counters are devices that have special car counting firmware.

NB: During installation and setup process Car counters should also be bound to positions in groups of “ ” type.Stand-alone Car Counter

This service can correct raw sensor data and provides count of cars that crossed the sensor over. This provides a protection against partial total
message loss, each message has the full data by a given timestamp.

In order to provide a better balance balance between the frequency of reporting and battery life counters have two modes of operation - Standard
(max delay 20min) and Faster updates (max delay 5 minutes).

Please refer to the tables below for more details on the updates schedule in each mode:

Standard updates

Number of events Minimum time between previous and new counter updates

1..2 20 minutes

3..4 10 minutes

5..9 5 minutes

10 and more 3 minutes

Faster updates

Number of events Minimum time between previous and new counter updates

1..2 5 minutes

3..4 4 minutes

5..6 3 minutes

7..9 2 minutes

10 and more 1 minute

API details

Every car counting data object has the following format:

Company Confidential

{
 "type": "sa_car_counter",
 "sensor_id": "31777",
 "timestamp": 1615211864,
 "counter": 652,
 "errors": null,
 "msg_version": 2,
 "trace_id": "8d386f23-1172-27bb-55d9-5389a5fbf72e"
}

Fields description:

"type": "sa_car_counter" - always has the same value
"sensor_id" - sensor hardware ID in hex format
"timestamp" - Unix-timestamp of event
"counter" - . The maximum value is greater than 2 billion. This should be enough for most cases.number of detected cars
"errors" - list of errors or null. Supported error list can be different for different firmwares
"msg_version" - data protocol version
"trace_id" - message trace ID which can be used for development and debugging

So in the most simple case with one Entry (ingress) and one Exit (egress) lane the service receives two incrementing counters and subtracts Exit
counter from Entry counter to calculate the number of vehicles in the parking perimeter.

Company Confidential

1.

REST Occupancy API
Authorization
Endpoints Overview

/group/find/short_info
/group/{group_id}/status
/positions/states/find
/level/find/short_info
/level/{level_id}/status

Quick Start Guide

Sending Requests
Use Cases

Get Group Information & Occupancy Summary on the 2nd floor of MSCP
Get Group Information & Occupancy Summary within a search radius
Get individual position occupancy & summary for group X
Find occupancies longer than X minutes
Get occupancy summary per level (Digital signage)
Get position information and summary for level X (MSCP occupancy map)

Postman Collection

Importing Collection
Adding API key to Postman Environment

OpenAPI Documentation

Authorization

To retrieve occupancy information the client needs to be authorised. To successfully authorize with this API, the client is required to provide a
valid authorization token in the x-Auth-Token header of the HTTP request.

The authorization token can be obtained from the Nwave's console.

Click on the user icon in the top right corner and select Company Info.

Company Confidential

1.

2.

3.

Click + to the right of the Client API Auth Tokens card to generate a new token.

Enter a name, select permissions and project scope for the new token and click Add.

Company Confidential

3.

4. Copy the generated token.

Company Confidential

4.

Endpoints Overview

/group/find/short_info

This endpoint retrieves a list of groups and their occupancy summary per specified filters. Each group info has geolocation location data and
filters may be geospatial.

Available filters:

project_id
zone_id
group_id
level_id or floor_number
geospatial filter

More detailed info can be found in in the end of this document.Swagger documentation

/group/{group_id}/status

This endpoint retrieves information for a single group. It will return a list of all parking positions, their location and occupancy status. It detailed
will also return an occupancy summary for this group.

More detailed info can be found in in the end of this document.Swagger documentation

1.
2.

Useful for:

Quick display of all the parking groups and their aggregate status per specified filters.
Displaying occupancy summary on .digital signage

Company Confidential

1.
2.
3.

/positions/states/find

This endpoint retrieves information for all of the positions with extensive filtering capabilities.comprehensive

More detailed info can be found in in the end of this document.Swagger documentation

/level/find/short_info

This endpoint retrieves level details and occupancy summary for each level.

More detailed info can be found in in the end of this document.Swagger documentation

/level/{level_id}/status

This endpoint retrieves information for a single level. It will return level details as well as occupancy and location details of every position detailed
on that level.

More detailed info can be found in in the end of this document.Swagger documentation

Quick Start Guide

Sending Requests

URLc

Run the following command in your terminal window.

curl -v -H 'x-Auth-Token: <your_token>' 'https://api.nwave.io/parking/v1
/positions/states/find'

Postman

Enter the URL and select the GET method.
Fill out the key-value pair under the headers tab.
Click Send.

Useful for . e.g. when a user selects a parking group in a mobile app.quickly displaying all the parking spots in a chosen location

Useful for in a particular zone as it is capable of filtering by occupancy and status change time.finding overstays

Thi endpoint can be that returns less dataslower in comparison to /group/find/short_info .

Useful for .displaying occupancy per level on digital signage

Useful for displaying in a multi-storey car park.occupancy of all positions on a single level

Company Confidential

Use Cases

Get Group Information & Occupancy Summary on the 2nd floor of MSCP

Get the list of parking groups objects (including occupancy summary) on the 2nd level of multi-storey car parking (project ID = 123).

cURL Example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/group/find/short_info?project=123&floor_number=2'

Postman Example

This request will return all groups on the 2nd floor and the summary for each group. If you want a summary for the whole floor use level
endpoints.

Company Confidential

Get Group Information & Occupancy Summary within a search radius

Get parking groups within 2km of the user’s coordinates.

Company Confidential

cURL example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/group/find/short_info?lat=51.504536284954085&lon=-0.0847326846421401
&radius=2000'

Postman example

Company Confidential

Get individual position occupancy & summary for group X

Get detailed group information for group 2100 when a user chooses a group from the map.

Company Confidential

cURL example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/group/2100/status'

Postman example

Company Confidential

1.
2.
3.

Find occupancies longer than X minutes

If the current time is 2021-02-01 15:24:00, in order to find all positions that have been occupied for over 2 hours in zone 419, we should use the
following query string parameters:

state: Occupied
time_to: 2021-04-09T13:24:00 (current time minus 120 minutes)
zone_id: 419

zone id is available on the individual zone page

Company Confidential

cURL example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/positions/states/find?state=Occupied&time_to=2021-02-01T16:00:
00&zone_id=123'

Postman example

Company Confidential

Get occupancy summary per level (Digital signage)

To retrieve occupancy summaries for all levels and display them on a digital sign use the following request.

Company Confidential

cURL example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/level/find/short_info?zone_id=123'

Postman example

Company Confidential

Get position information and summary for level X (MSCP occupancy map)

Retrieving all of the positions information and summary for a level can be useful for displaying availability map for a single floor in a multi-storey
car park.

Company Confidential

1.
2.
3.
4.

This request will retrieve:

level information
positions locations on a level
positions' occupancies
occupancy summary for that level

cURL example

curl -v -H 'x-Auth-Token: <Your API Key>' 'https://api.nwave.io/parking
/v1/level/130/status'

Postman example

Company Confidential

1.

Postman Collection

Importing Collection

Click in the My Workspace section.import

Company Confidential

1.

2. Upload the collection file and click .Import

Adding API key to Postman Environment

This collection uses the variable to add an authorization token to the header.api_key x-Auth-Token

To create a new environment click on the near the top right corner.eye icon

Company Confidential

2. Click to add a new environment.Add

Company Confidential

3. Add the variable name and your token in the initial value.api_key

4. Select the New Environment from the list.

Company Confidential

5. You can now test the requests in the REST Occupancy Collection.

OpenAPI Documentation

Visualize OpenAPI (Swagger) documentation app

Export to PDF of the OpenAPI specification is not supported. See interactive documentation online.

Company Confidential

GraphQL Occupancy API
Authorization
GraphQL Schema
Subscription Areas

Subscription Area Filters
Subscription Area Updates

Object & Field Descriptions

SubscirptionArea
ZoneOccupancy
LevelOccupancy
GroupOccupancy
PositionOccupancy

Operations

groupOccupancy
findGroupOccupancies
findPositionOccupancies
createSubscriptionArea

Subscription Area Expiration
onSubscriptionAreaUpdates
updateSubscriptionArea

Use cases

Displaying all parking groups within 2km in a mobile app
Displaying individual parking positions when a user approaches his desired parking location
Displaying occupancy statuses of positions with label “Disabled” within 2km radius
Displaying live parking statuses within 2km radius
Displaying live occupancies per level in a zone (multistory car park)
Displaying live occupancies of disabled spaces per level in a zone
Extend subscription area expiration

Postman Collection

Importing Collection
Adding API key to Postman Environment

GraphQL Occupancy API offers similar functionality to , however, there are to using GraphQL.REST Occupancy API additional benefits

You can select the fields you want to receive from the API. By requesting only the required fields from the API you can decrease traffic and
consequently increase load speed.

Additionally, GraphQL Occupancy API supports subscriptions, which allows you to receive occupancy updates. real-time

Authorization

In order to authorize with this API, you need to add the following header to your request:

Key Value

Authorization <your token>

Your token can be obtained from the section of the Nwave’s console.Company Info

GraphQL Schema

The following GraphQL schema describes data types and operations that can be performed.
schema.graphql

type GroupOccupancy @aws_api_key
@aws_lambda {
 id: ID!
 zoneId: Int
 levelId: Int
 name: String!
 groupType: String!
 customId: String

Company Confidential

 location: Location
 positionsOccupancy: [PositionOccupancy]
 summary: OccupancySummary
}

input GroupOccupancyInput {
 id: ID!
 zoneId: Int
 levelId: Int
 name: String!
 groupType: String!
 customId: String
 location: LocationInput!
 positionsOccupancy: [PositionOccupancyInput!]!
 summary: OccupancySummaryInput!
}

type LevelOccupancy @aws_api_key
@aws_lambda {
 id: Int
 name: String
 zoneId: Int!
 floorNumber: Int
 summary: OccupancySummary
}

input LevelOccupancyInput {
 id: Int
 zoneId: Int!
 floorNumber: Int
 name: String
 summary: OccupancySummaryInput!
}

type Location @aws_api_key
@aws_lambda {
 lat: Float!
 lon: Float!
}

input LocationInput {
 lat: Float!
 lon: Float!
}

type Mutation {
 createSubscriptionArea(
 lat: Float,
 lon: Float,
 radius: Int,

Company Confidential

 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],
 granularity: SubscriptionGranularity
): SubscriptionAreaNoUpdates
 @aws_api_key
@aws_lambda
 updateSubscriptionArea(
 id: ID!,
 lat: Float,
 lon: Float,
 radius: Int,
 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],
 granularity: SubscriptionGranularity
): SubscriptionAreaNoUpdates
 @aws_api_key
@aws_lambda
 updatePositionOccupancy(positionId: Int!, occupancyStatus:
OccupancyStatus!, timestamp: String!): PositionOccupancy
 @aws_api_key
 pushPositionUpdates(
 id: ID!,
 location: LocationInput,
 radius: Int,
 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],
 granularity: SubscriptionGranularity!,
 expiresOn: AWSDateTime!,
 updates: [PositionOccupancyInput!]!,
 updateTime: String!
): SubscriptionAreaWithUpdates
 @aws_api_key
 pushGroupUpdates(
 id: ID!,
 location: LocationInput,
 radius: Int,
 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],

Company Confidential

 granularity: SubscriptionGranularity!,
 expiresOn: AWSDateTime!,
 updates: [GroupOccupancyInput!]!,
 updateTime: String!
): SubscriptionAreaWithUpdates
 @aws_api_key
 pushLevelUpdates(
 id: ID!,
 location: LocationInput,
 radius: Int,
 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],
 granularity: SubscriptionGranularity!,
 expiresOn: AWSDateTime!,
 updates: [LevelOccupancyInput!]!,
 updateTime: String!
): SubscriptionAreaWithUpdates
 @aws_api_key
 pushZoneUpdates(
 id: ID!,
 location: LocationInput,
 radius: Int,
 zoneId: [Int],
 levelId: [Int],
 floorNumber: [Int],
 groupId: [Int],
 labels: [String],
 granularity: SubscriptionGranularity!,
 expiresOn: AWSDateTime!,
 updates: [ZoneOccupancyInput!]!,
 updateTime: String!
): SubscriptionAreaWithUpdates
 @aws_api_key
}

enum OccupancyStatus {
 Occupied
 Free
}

type OccupancySummary @aws_api_key
@aws_lambda {
 total: Int!
 occupied: Int!
 available: Int!
 undefined: Int!
}

Company Confidential

input OccupancySummaryInput {
 total: Int!
 occupied: Int!
 available: Int!
 undefined: Int!
}

type PositionOccupancy @aws_api_key
@aws_lambda {
 id: ID!
 customId: String
 groupId: Int
 occupancyStatus: OccupancyStatus
 statusChangeTime: AWSDateTime
 location: Location!
}

input PositionOccupancyInput {
 id: ID!
 customId: String
 groupId: Int!
 occupancyStatus: OccupancyStatus!
 statusChangeTime: AWSDateTime!
 location: LocationInput!
}

type Query {
 groupOccupancy(id: ID!): GroupOccupancy
 @aws_api_key
@aws_lambda
 findGroupOccupancies(
 ids: [Int],
 lat: Float,
 lon: Float,
 radius: Int,
 levelId: [Int!],
 labels: [String!],
 floorNumber: [Int!],
 zoneId: [Int!],
 projectId: Int,
 groupCustomId: String,
 limit: Int,
 offset: Int
): [GroupOccupancy]
 @aws_api_key
@aws_lambda
 findPositionOccupancies(
 ids: [Int],
 lat: Float,

Company Confidential

 lon: Float,
 radius: Int,
 groupId: [Int!],
 levelId: [Int!],
 labels: [String!],
 floorNumber: [Int!],
 zoneId: [Int!],
 projectId: Int,
 groupCustomId: String,
 limit: Int,
 offset: Int
): [PositionOccupancy]
 @aws_api_key
@aws_lambda
}

union RtaUpdateObject = ZoneOccupancy | LevelOccupancy |
GroupOccupancy | PositionOccupancy

type Subscription {
 onSubscriptionAreaUpdates(id: ID!):
SubscriptionAreaWithUpdates
 @aws_api_key
@aws_lambda
@aws_subscribe(mutations: ["pushPositionUpdates","pushGroupUpdates","
pushLevelUpdates","pushZoneUpdates"])
}

interface SubscriptionArea {
 id: ID!
 location: Location
 radius: Int
 zoneId: [Int]
 levelId: [Int]
 floorNumber: [Int]
 groupId: [Int]
 labels: [String]
 granularity: SubscriptionGranularity!
 expiresOn: AWSDateTime!
}

type SubscriptionAreaNoUpdates implements SubscriptionArea
@aws_api_key
@aws_lambda {
 id: ID!
 location: Location
 radius: Int
 zoneId: [Int]
 levelId: [Int]
 floorNumber: [Int]

Company Confidential

 groupId: [Int]
 labels: [String]
 granularity: SubscriptionGranularity!
 expiresOn: AWSDateTime!
}

type SubscriptionAreaWithUpdates implements SubscriptionArea
@aws_api_key
@aws_lambda {
 id: ID!
 location: Location
 radius: Int
 zoneId: [Int]
 levelId: [Int]
 floorNumber: [Int]
 groupId: [Int]
 labels: [String]
 granularity: SubscriptionGranularity!
 expiresOn: AWSDateTime!
 updates: [RtaUpdateObject]
 updateTime: AWSDateTime
}

enum SubscriptionGranularity {
 Position
 Level
 Group
 Zone
}

type ZoneOccupancy @aws_api_key
@aws_lambda {
 id: ID!
 name: String!
 projectId: Int
 summary: OccupancySummary
}

input ZoneOccupancyInput {
 id: ID!
 name: String!
 projectId: Int
 summary: OccupancySummaryInput!
}

@api_key (admin) auth and @aws_lambda (user) auth are required for
all types apart from:
updatePositionOccupancy
pushPositionUpdates
pushGroupUpdates

Company Confidential

1.
2.

1.
2.

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.

pushLevelUpdates
pushZoneUpdates
These are for internal subscription notification and should have
exclusive admin access
schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

Subscription Areas

A subscription area is an object that has two main functions:

Filtering of the incoming position updates
Defining the format of updates that is received by subscribers

There are two types defined in the GraphQL schema for Subscription Areas:

SubscriptionAreaNoUpdates - this type is returned when you create or update a Subscription Area. It does not have ‘updates’ &
‘updateTime’ fields as updates are only returned to active subscriptions.

SubscriptionAreaWithUpdates - this type is returned to subscribers and as the name suggests it contains the ‘updates’ & ‘updateTime’
fields.

Subscription Area Filters

Subscription Areas filter the incoming updates and only notify the subscribers if the incoming position update matches all of the filters.
Subscription Area filters can also be split into 2 categories:

Hierarchical Filters: zoneId, groupId, levelId, floorNumber, labels
Geospatial Filters: lat, lon, radius

A match is when all position attributes are a of the Subscription Area filters and it implies that a given position is inside a Subscription subset ()
Area.

The following example is a valid match between Subscription Area and Position Update.
Position

zoneId: 1
groupId: 2
levelId: 3
floorNumber: 4
labels: []'EV', ‘Disabled’
lat: 0.0
lon: 0.0

Subscription Area

zoneId: [, 2, 3]1
groupId: [1, , 3]2
levelId: []3
floorNumber: null
lables: [, ‘VIP’]'EV', ‘Disabled’
lat: 0.0
lon: 0.0
radius: 100

Subscription areas expiry 5 minutes after creation. Any update of a subscription area, including an empty one, will extend the expiration
time by 5 minutes from the time of update.

A valid subscription area must have at least one hierarchical filter and/or all of the geospatial filters.

Subscription Area filter with value matches everything.null

Geospatial filters create a circular search area on the map, and there can be cases when a of devices falls into the group partially
search area. (e.g. Half a group is within the search area and half is outside of the search area).

Updates for positions that do not fall into the search area would still notify the subscribers.

Company Confidential

Subscription Area Updates

The updates field of a Subscription Area can contain a list of 4 different types. All types within the updates list are the same. The type you will
receive in the updates field depends on the granularity you choose.

Granularity Updates Type

Zone ZoneOccupancy

Level LevelOccupancy

Group GroupOccupancy

Position PositionOccupancy

Object & Field Descriptions

SubscirptionArea

id - subscription area id
location - center coordinates of the search area
radius - radius from the center in meeters that creates the search area
zoneId - list of zone ids to match
levelId - list of level ids to match
floorNumber - list of floor numbers to match
groupId - list of group ids to match
labels - list of labels to match
granularity - defines the updates type
expiresOn - timestamp of subscription area expiration
udpates - occupancy updates for a subscription area
updateTime - timestamp of the occupancy update

ZoneOccupancy

id - zone id
name - zone name
projectId - project id
summary - summary of occupancies in the Zone

LevelOccupancy

id - level id
name - level name
zoneId - zone id
floorNumber - floor number of a level
summary - summary of occupancies on a Level

GroupOccupancy

id - group id
zoneId - zone id
levelId - level id
name - group name
groupType - group type e.g. marked_bay
customId - user defined group id
location - enter coordinates of a group
positionOccupancy - list of PositionOccupancy objects for a group
summary - summary of occupancies in the Group

PositionOccupancy

id - position id

Updates field will always contain only the object that has changed and therfore the list should always have a length of 1.

Company Confidential

customId - custom id
groupId - group id
occupancyStatus - ‘occupied’, ‘free’ or null
statusChangeTime - timestamp of last occupancyStatus change
location: coordinates of a position

Operations

The following operations can be performed using either Postman or curl command except for subscription operations.

groupOccupancy

This query will return the occupancy of a single group.
Query

query MyQuery {
 groupOccupancy(id: 123) {
 id
 customId
 name
 location {
 lat
 lon
 }
 positionsOccupancy {
 customId
 id
 groupId
 location {
 lat
 lon
 }
 occupancyStatus
 statusChangeTime
 }
 }
}

Response

The summary object should be used to display availability for all parking group types as it handles unmarked bay occupancies

Company Confidential

{
 "data": {
 "groupOccupancy": {
 "id": 3544,
 "customId": null,
 "name": "Foo",
 "location": {
 "lat":
51.493601937687224,
 "lon":
-0.12852029611716095
 },
 "positionsOccupancy": [
 {
 "customId": "",
 "id": 1,
 "groupId": 123,
 "location": {
 "lat":
51.49360068522545,
 "lon":
-0.1286061268139623
 },
 "occupancyStatus":
"Free",
 "statusChangeTime":
"2021-01-27T19:22:47.548+00:
00"
 },
 {
 "customId": "",
 "id": 2,
 "groupId": 123,
 "location": {
 "lat":
51.493601937687224,
 "lon":
-0.12852029611716098
 },
 "occupancyStatus":
"Occupoed",
 "statusChangeTime":
"2021-01-27T18:56:53.502+00:
00"
 }
]
 }
 }
}

Company Confidential

findGroupOccupancies

This query will return a list of group occupancies.
Query

query MyQuery {
 findGroupOccupancies(ids:
[1234]) {
 id
 location {
 lat
 lon
 }
 summary {
 available
 occupied
 total
 undefined
 }
 }
}

Response

{
 "data": {
 "findGroupOccupancies": [
 {
 "id": 1234,
 "location": {
 "lat":
50.780416909504915,
 "lon":
-1.0914407438684124
 },
 "summary": {
 "available": 34,
 "occupied": 13,
 "total": 47,
 "undefined": 0
 }
 }
]
 }
}

findPositionOccupancies

This query will return a list of position occupancies.
Query

query MyQuery {
 findPositionOccupancies
(ids: [1]) {
 id
 location {
 lat
 lon
 }
 occupancyStatus
 statusChangeTime
 groupId
 customId
 }
}

Response

Company Confidential

{
 "data": {

"findPositionOccupancies": [
 {
 "id": 12345,
 "location": {
 "lat":
51.49360068522545,
 "lon":
-0.1286061268139623
 },
 "occupancyStatus":
"Free",
 "statusChangeTime":
"2021-01-27T19:22:47.548+00:
00",
 "groupId": 123,
 "customId": ""
 }
]
 }
}

createSubscriptionArea

This mutation will create a new subscription area.

Subscription Area Expiration

By default, subscription areas expire 5 minutes after creation. Once a subscription area is expired, it cannot be extended and subscribers will
stop receiving updates.
Mutation Response

Company Confidential

1.
2.

mutation MyMutation {
 createSubscriptionArea(
 granularity: Group,
 lat: 51.493930,
 lon: -0.129030,
 radius: 100
) {
 expiresOn
 granularity
 id
 location {
 lat
 lon
 }
 radius
 }
}

{
 "data": {
 "createSubscriptionArea":
{
 "expiresOn": "2021-01-
28T23:20:06.232+00:00",
 "granularity": "Group",
 "id": 1,
 "location": {
 "lat": 51.49393,
 "lon": -0.12903
 },
 "radius": 100
 }
 }
}

onSubscriptionAreaUpdates

This subscription will subscribe to occupancy updates inside an area.

Selected updates object type must correspond to the granularity of the created search area:

granularity: Position updates { … on PositionOccupancy }
granularity: Group updates { … on GroupOccupancy }

If you are unsure of the granularity for your subscription area, you can specify both types inside the updates.
Subscription Update

{
 "data": {

"onSubscriptionAreaUpdates": {
 "id": 1,
 "expiresOn": "2021-01-
28T23:20:06.232+00:00",
 "granularity": "Group",
 "location": {
 "lat": 51.49393,
 "lon": -0.12903
 },
 "radius": 1000,
 "updateTime": "2021-01-
28T23:17:38.400+00:00",
 "updates": [
 {
 "id": 123,
 "name": "Foo",

Company Confidential

subscription MySubscription {
 onSubscriptionAreaUpdates
(id: 1) {
 id
 expiresOn
 granularity
 location {
 lat
 lon
 }
 radius
 updateTime
 updates {
 ... on GroupOccupancy {
 id
 name
 customId
 location {
 lat
 lon
 }
 positionsOccupancy {
 customId
 groupId
 id
 location {
 lat
 lon
 }
 occupancyStatus
 statusChangeTime
 }
 summary {
 undefined
 total
 occupied
 available
 }
 }
 }
 }
}

 "customId": null,
 "location": {
 "lat":
51.493601937687224,
 "lon":
-0.12852029611716095
 },

"positionsOccupancy": [
 {
 "customId": "",
 "groupId": 123,
 "id": 1,
 "location": {
 "lat":
51.49360068522545,
 "lon":
-0.1286061268139623
 },

"occupancyStatus": "Occupied",

"statusChangeTime": "2021-01-
28T23:17:38.400+00:00"
 }
],
 "summary": {
 "undefined": 0,
 "total": 1,
 "occupied": 1,
 "available": 0
 }
 }
]
 }
 }
}

updateSubscriptionArea

This mutation will update an existing subscription area.

Company Confidential

Mutation

mutation MyMutation {
 updateSubscriptionArea(
 id: 1,
 granularity: Position,
 radius: 500
) {
 expiresOn
 id
 granularity
 location {
 lat
 lon
 }
 radius
 }
}

mutation ExtendSubscription {
 updateSubscriptionArea(
 id: 1,
) {
 expiresOn
 id
 }
}

Response

{
 "data": {
 "updateSubscriptionArea":
{
 "expiresOn": "2021-01-
28T23:20:06.232134+00:00",
 "id": 1,
 "granularity":
"Position",
 "location": {
 "lat": 51.49393,
 "lon": -0.12903
 },
 "radius": 500
 }
 }
}

{
 "data": {
 "updateSubscriptionArea":
{
 "expiresOn": "2021-01-
28T23:25:06.232134+00:00",
 "id": 1,
 }
 }
}

Use cases

Query Use case

All subscription area updates will extend expiration by 5 minutes from the current time.

You can also send empty mutation to only update the expiration.

Company Confidential

query MyQuery {
 findGroupOccupancies
(
 lat: 0.0,
 lon: 0.0,
 radius: 2000
) {
 location {
 lat
 lon
 }
 summary {
 available
 }
 }
}

Displaying all parking groups within 2km in a mobile app

The summary object should be used to display
availability for all parking group types

Company Confidential

query MyQuery {
 groupOccupancy(id:
1) {

positionsOccupancy {
 location {
 lat
 lon
 }
 occupancyStatus
 }
 }
}

Displaying individual parking positions when a user approaches his desired
parking location

query MyQuery {

findPositionOccupancie
s(
 lat: 0.0,
 lon: 0.0,
 radius: 2000,
 labels:
['Disabled']
) {
 id
 location {
 lat
 lon
 }
 occupancyStatus
 }
}

Displaying occupancy statuses of positions with label “Disabled” within 2km
radius

Company Confidential

mutation MyMutation {

createSubscriptionArea
(
 granularity:
Position,
 lat: 1.5,
 lon: 1.5,
 radius: 2000
) {
 id
 }
}
subscription
MySubscription {

onSubscriptionAreaUpda
tes(
 id: <id from
previous mutation>
)
}

Displaying live parking statuses within 2km radius

Company Confidential

mutation
LevelOccuppancyMutatio
n {

createSubscriptionArea
(
 zoneId: 3,
 granularity: Level
) {
 id
 }
}
subscription
MySubscription {

onSubscriptionAreaUpda
tes(
 id: <id from
previous mutation>
)
}

Displaying live occupancies per level in a zone ()multistory car park

Company Confidential

mutation
LevelOccuppancyDisable
dMutation {

createSubscriptionArea
(
 zoneId: 3,
 labels:
"Disabled",
 granularity: Level
) {
 id
 }
}
subscription
MySubscription {

onSubscriptionAreaUpda
tes(
 id: <id from
previous mutation>
)
}

Displaying live occupancies of disabled spaces per level in a zone

mutation MyMutation {

updateSubscriptionArea
(
 id: 1,
) {
 expiresOn
 id
 }
}

Extend subscription area expiration

Postman Collection

Download Postman Collection here:

Company Confidential

1.

1.

Importing Collection

Click in My Workspace section.import

Upload the collection file and click

Import.

Company Confidential

1.

Adding API key to Postman Environment

This collection uses the variable to add an authorization token to the x-api-key header.api_key

To create a new environment click on the near the top right corner.eye icon

2. Click to add a new environment.Add

Company Confidential

3. Add the variable name and your token in the initial value.gql_api_key

4. Select the New Environment from the list.

Company Confidential

5. You can now test the requests in the GraphQL Occupancy Collection.

Company Confidential

	ND-ParkingAPIsIntroduction-160123-0101.pdf
	Parking APIs Introduction

	caller combined.pdf
	caller 1.pdf
	Overview

	caller 2.pdf
	Quick Start Guide

	caller 3.pdf
	Standard Templates (Direct & Smart)

	caller 4.pdf
	Custom Templates

	caller 5.pdf
	HTTP Templates and Suites

	rabbit.pdf
	1ND-RabbitMQBrokerAWSSetup-160123-0118.pdf
	Rabbit MQ Broker AWS Setup

	2ND-RabbitMQGroupAvailability-160123-0119.pdf
	RabbitMQ Group Availability

	3ND-RabbitMQParkingSessions-160123-0120.pdf
	RabbitMQ Parking Sessions

	4ND-RabbitMQConsumerCodeExamples-160123-0120.pdf
	RabbitMQ Consumer Code Examples

	5ND-RabbitMQCarCounter-160123-0121.pdf
	RabbitMQ Car Counter

	ND-RESTOccupancyAPI-160123-0104.pdf
	REST Occupancy API

	ND-GraphQLOccupancyAPI-160123-0106.pdf
	GraphQL Occupancy API

